Resources for the prevention, treatment, and management of mastitis

Dairy farmers looking for resources and tools associated with the prevention, management, and treatment of mastitis can access a number of information documents and videos available online through the Mastitis Network’s new website at www.mastitisnetwork.org.

Mastitisimage_blogAug2019
The new Mastitis Network (formerly known as the Canadian Bovine Mastitis and Milk Quality Research Network) website.

A summary of results from the mastitis research program under the Dairy Research Cluster 2 (2013-2018) is available on dairyresearch.ca. The two-page summary includes a list of key outcomes and links to mastitis research projects conducted over the last five years. By clicking on the links in the document, you can learn more about the results of the project, knowledge translation and transfer tools developed to date, and the publications to inform and help dairy farmers manage the health of their animals.

Four whiteboard videos were also produced by the Mastitis Network on their YouTube Channel. All whiteboard videos, as well as many other resources, can be found on the website.

 

WhiteboardMastitis
Video explaining the results of a study on Mastitis prevention and milking management by the Mastitis Network

 

 

 

$16.5M invested in a third Dairy Research Cluster: For a productive, innovative and sustainable sector

logo_grappe_3__sans_txt_EN-FROn July 16, 2019, the Minister of Agriculture and Agri-Food Canada, the Honourable Marie-Claude Bibeau, announced an $11.4 million investment in a third Dairy Research Cluster to be led by Dairy Farmers of Canada (DFC). Joint industry and government commitments to the Dairy Research Cluster 3 total $16.5 million, including the contribution from major partners Lactanet Canada, Novalait, and Agriculture and Agri-Food Canada.

Investments will be made in 15 research projects targeted to address DFC’s strategic research priorities identified in the National Dairy Research Strategy and will cover dairy farm efficiency and sustainability, cow health and welfare, milk quality, and the health benefits of dairy products consumption.

The Dairy Research Cluster 3 (DRC3) builds on the success of the Dairy Research Cluster 1 and 2 (2010-2018) to stimulate productivity, sustainability, and profitability on farms, and to improve knowledge of the health benefits of milk and dairy products consumption.

Communications, knowledge translation and transfer (KTT) activities are also planned for the DRC3 with a focused and strategic approach based on the National Strategy for Dairy Production Research Knowledge Translation and Transfer.

Dairy Cluster 3_Research Projects and Investments_019(v20)

 

List of the Dairy Research Cluster 3 projects and investments (2018-2023)

 

 

 

grappe3_canada(v6)

 

Map with the location, institution, and number of scientists involved in the Dairy Research Cluster 3

 

Video Blog : Derek Haley on Calf Health

A new video blog (VLOG) is available featuring Dr. Derek Haley of the University of Guelph reporting on his research findings in calf health, welfare and the use of automatic calf feeders. Funded under the Dairy Research Cluster 2 (2013-2018), Dr. Haley and his collaborators investigated the labour requirements, potential welfare benefits for calves and the ability to accelerate performance of pre-weaned calves housed in groups with automated feeders. Watch the VLOG of Derek reporting on his findings on the Dairy Research Cluster YouTube Channel here:

 

Dairy Research Excellence: Canadian dairy scientist awarded prestigious 2018 Hans Sigrist Prize

Hans-Sigrist_square
Left to right: Norbert Trautmann, President Hans Sigrist Foundation, University of Bern; Marina von Keyserlingk, 2018 Hans Sigrist Prize Winner, University of British Columbia; Rupert Bruckmaier, Head of Veterinary Physiology, University of Bern and Hans Sigrist Prize search committee chair.

University of British Columbia Professor Marina (Nina) von Keyserlingk was recognized by the Hans Sigrist Foundation at the University of Bern, Switzerland, with the 2018 Hans Sigrist Prize for her outstanding academic contributions in the field of Sustainably Produced Food of Animal Origin.

“The search committee was unanimous in recognizing that she is truly outstanding when compared to others working in the same field” stated committee chair Professor Rupert Bruckmaier, Head of Veterinary Physiology at the University of Bern.

The foundation awards the Hans Sigrist Prize  with an equivalent of $130,000 CAD research grant to a mid-career academic researcher to recognize research contributions to date and to encourage further outstanding work.

Dr. von Keyserlingk had held a NSERC Industrial Research Chair in Animal Welfare supported by the dairy sector, including Dairy Farmers of Canada, since 2008. Nina is recognized internationally for cutting-edge research on the care and housing of dairy cows and calves. She has been a pioneer in the use of behaviour (including especially automated measures) for the early detection and prediction of disease in animals. This work has focused on the use of changes in feeding and social behaviour as early indicators of disease, and has provided a basis for the rapid growth in new research focused on automated health assessments on farms.

Her work is also among the first in the field of animal welfare to incorporate qualitative methods when addressing animal welfare issues, such as interviews, focus groups and online crowd sourcing tools to understand perspectives of farmers, veterinarians and the public with regards to animal care and use. This work has motivated scientific research better targeted at perceived constraints and illustrates a new trend towards interdisciplinary research to address societal concerns around animal agriculture.

Mastitis MOOCs

A new series of MOOCs on mastitis (MOOC is a Massive Online Open Course) is available free through the Université de Montréal. The series was designed by the Canadian Bovine Mastitis and Milk Quality Research Network (CBMQRN) and Université de Montréal as part of the NSERC CREATE in Milk Quality Program. The researchers brought together experts from more than 20 countries to produce the series to initiate graduate students to mastitis science and prepare them for their research programs. Dairy practitioners, teachers and other professionals with a solid scientific background can also enrol to advance their knowledge.

MOOC1_eng.jpg
The first MOOC called, The mammary gland and its response to infectionhas been available since November 2017. It contains basic knowledge on mammary gland anatomy and physiology, immune response, the role of genetics, and pathophysiology. Information can be found at: Mastitis MOOC 1.

MOOC2_eng.jpg
The second MOOC, Mastitis Epidemiology and Diagnostic, presents methods of identification of mastitis infections and methods of diagnostics. Enrolment and information can be accessed at: Mastitis MOOC 2 .

A third MOOC entitled, Mastitis control and milk quality, will be available at a later time.

 

Automated heat detection performs just as well as synch programs and provides fertility intel

Automated heat detection performs just as well as synch programs and provides fertility intel

Authors: Dr. Ronaldo Cerri (University of British Columbia) and Meagan King, (Postdoc, University of Guelph)

Why are automated activity monitors (AAM) becoming more popular on Canadian dairy farms? DFC-funded research has shown that AAM can work just as well as synchronization programs while also predicting which cows will have better fertility.

Neck collars or leg pedometers are currently used on 10% of Canadian dairy farms as their main strategy for reproductive management (>50% of inseminations). Visual heat detection and timed AI are still used more than AAM, but this may change as hormone use is further scrutinized.

Two large field trials in Ontario and BC (funded by the Dairy Research Cluster 2, supervised by Dr. Ronaldo Cerri at the University of British Columbia and students Tracy Burnett, Augusto Madureira, and Liam Polsky) found that reproduction programs using AAM for heat detection are equally efficient as those relying heavily on synchronization protocols.

Breeding cows based on AAM data had similar pregnancy per AI and days open compared with a strict timed AI program (Presynch-Ovsynch). With goals to improve heat detection accuracy and the use of AAM data to make farm-level management decisions, Dr. Cerri’s research group studies how estrus events and intensity are related to ovulation, ovarian/uterine function, fertility, and performance in dairy reproduction programs.

The researchers also found that cows with high intensity heats and large changes in activity (during spontaneous and induced estrus) had greater pregnancy per AI and better fertility, compared to cows with low intensity heats who had more ovulation failure. Moreover, the top 25% highest-producing cows had heats with the lowest intensity and shortest duration. Older cows, those with low body condition, and those experiencing high temperature-humidity indices (above 65) showed less estrus behaviour as well.

In the BC field trial, each individual farm was a big source of variation in the performance of programs based on heat detection, likely because AAM are more prone to individual farm variations compared with established timed AI protocols. This means that the best reproductive program for each farm may differ based on their specific strengths, particularly whether they can better use AAM or injection-schedules properly and consistently. Anovular cows and those with poor leg health can also impair the performance of AAM reproductive programs.

Ultimately, differences in attitudes and preferences among Canadian dairy producers (highlighted in a nationwide survey by José Denis-Robichaud) should be considered when choosing the optimal reproduction management tools. For example, producers have differing views about reproduction hormones in terms of profitability and long-term effects on fertility. However, for farms already reaching 30 to 35% conception rates from breeding at estrus, doing that will still be more profitable than completing full synchronization protocols.

 

Cow comfort: Does making changes to the freestall area make a difference?

Cow comfort: Does making changes to the freestall area make a difference?

Authors: Dr. Karin Orsel, Emily Morabito (MSc.) and Caroline Corbett, (Ph.D), University of Calgary

Cow comfort and animal welfare are of great importance to the dairy industry. The Code of Practice for the Care and Handling of Dairy Cattle contains recommended practices and requirements for Canadian dairy producers regarding welfare; however, it is unknown whether changes are actually made on farms, and what effects these changes have on cow comfort.

A research project led by MSc. student Emily Morabito and supervised by Dr. Karin Orsel at the University of Calgary investigated whether changes were made to the freestalls on farms that had previously participated in a cow comfort risk assessment, and then reassessed animal measures of cow comfort described on the Canadian Dairy Research portal. The team found that farms that made changes to the freestall area following the first assessment had a lower percentage of lame cows, and cows had increased average daily lying time compared to the farms that did not make changes, or farms that had never been assessed. Additionally, farmers that had made changes to the freestalls scored certain risk factors for lameness as more important when compared to the group that made no changes.

In the first part of the study, 60 cows were selected on each farm and assessed for lameness, leg injuries and lying time over four days. The 1st group (15 farms) had a risk assessment conducted 5 years earlier and had since made changes to the freestall area; the 2nd group (15 farms) had a risk assessment conducted 5 years earlier, but did not make changes. The 3rd group (14 farms) had never been evaluated previously. Based on the responses from the 1st group, the most frequent changes to the freestall area were increased bedding quantity, changing the stall base to geomatresses, and grooving crossover alleys; however, the specific changes and their effect on cow comfort could not be directly assessed due to the variability in the types of changes, or combination of changes that were made. The changes made are in line with current research, especially those indicating that deep bedded straw or sand, decreases leg injuries that may occur.

Secondly, a questionnaire was conducted on-farm with the producers that was similar to the one they had completed 5 years earlier, and their answers were compared to those that had been provided at the previous assessment. Farmers in the 1st group tended to score risk factors for lameness as more important than those in the 2nd group; however, these producers started with a higher measurement of lameness in the earlier assessment, which may have contributed to their decision to make changes. All farmers scored risk factors as more important during the most recent questionnaire, indicating the previous assessment may have had an impact on producer perceptions of lameness. Additionally, other resources of information resulting from increased industry awareness may have led to all farmers being more knowledgeable regarding lameness and risk factors as time progresses.

This study indicates that those who make changes had improved animal-based measures of cow comfort, and being exposed to cow comfort assessment impacts the perceived importance of risk factors associated with lameness.

Risk Factors for Lameness

  • Cow comfort

  • Facility design

  • Management/Environmental factors

Controlling bovine infectious diseases: Canadian research teams aim to produce beneficial results for farmers

image010.png

Dr. Herman Barkema, Industrial Research Chair in Infectious Diseases of Dairy Cattle (IRC-IDDC) at the University of Calgary Faculty of Veterinary Medicine has been the Senior Industrial Research Chairholder since April of 2014. The research program of the IRC-IDDC focuses on Johne’s disease and mastitis.

Industrial Research Chair – An industry partnership

Dr. Barkema ensures that every facet of this prestigious research partnership funded by the dairy industry (Alberta Milk, Dairy Farmers of Canada, Westgen Endowment Fund, CanWest DHI, Dairy Farmers of Manitoba, the BC Dairy Association, and the Canadian Dairy Network) and the Natural Sciences and Engineering Research Council (NSERC) of Canada will maximally benefit Canadian dairy producers.

Johne’s prevention and control

image008.jpg
MSc. student Dominique Carson is investigating Johne’s disease in young stock.
image007
PhD. student Carolyn Corbett is investigating calf-to-calf transmission of Johne’s.

A key element in the strategy to achieving eradication of Johne’s disease from the Canadian dairy herd is the adoption of prevention and control practices by dairy farmers. The results of a recent study by Dr. Barkema and his team reveal that “one-size-fits-all” recommendations for these practices will rarely be sufficient for farmers, and that more personal approaches are needed to tailor recommendations to a farmer’s specific situation.

Moreover, Dr. Barkema’s studies indicate that calf-to-calf transmission of the disease-causing pathogen Mycobacterium avium subspecies paratuberculosis (MAP) can occur, especially in calves housed in groups.

Better understanding the bacteria causing mastitis

In his work as lead of the environment research theme in the Canadian Bovine Mastitis and Milk Quality Research Network (CBMQRN), Dr. Barkema realised that although coagulase-negative staphylococci (CNS) comprise the most common group of bacteria found in udders of lactating cows in Canada, little is actually known about them. Preliminary results from Dr. Barkema’s research indicate that the total prevalence of this group of bacteria is 10%. Some CNS isolates actually inhibit growth of major Gram-positive mastitis pathogens such as Staphylococcus aureus, which might be able to be exploited commercially to reduce mastitis in dairy cows.

Research Chairs – A training ground for the next generation of scientists

image011
Left to right: Students Diego Nobrega, PhD.,  Larissa Condas, MSc., and Dominique   Carson, MSc.

The training of the next generation of researchers and extension personnel represents an additional benefit to the dairy industry from the IRC-IDDC. The graduate and summer students and postdoctoral fellows working with Dr. Barkema’s team are the boots on the ground and the gloves in the lab carrying out the numerous experiments needed to produce beneficial results for producers.

For the remainder of the 5-year IRC-IDDC, Dr. Barkema and his team will complete the projects currently underway in Johne’s disease and mastitis and will share their research findings in Canada and across the globe with dairy farmers, extension practitioners and government representatives.

Dr. Shannon L. Tracey is from Cross the “T” Consulting. Dr. Herman Barkema is professor of epidemiology of infectious diseases at the University of Calgary’s faculty of veterinary medicine, and holds a joint appointment in the Cumming School of Medicine. He is also a guest professor at Ghent University in Belgium. Barkema leads the environment research theme in the Canadian Bovine Mastitis and Milk Quality Research Network, the Alberta Johne’s Disease Initiative, the Alberta Inflammatory Bowel Disease Consortium, the Clinical Research Unit of the Cumming School of Medicine, the University of Calgary Biostatistics Centre, and the technical committee of the Canadian Voluntary Johne’s Disease Program.

New National Dairy Research Strategy Announced

dfc_researchstrategy_fin_engoct2016-copy

Dairy Farmers of Canada (DFC) has adopted a new strategy to direct its investments in dairy production and human nutrition and health research. Four major themes have been identified:

  1. Dairy farm efficiency and sustainability
  2. Animal health and welfare
  3. Milk composition, quality and safety
  4. Milk products and components in human nutrition and health.

Each theme has targeted outcomes established to ensure that dairy research projects will address the major issues Canadian dairy farmers want solved by research. To view a copy of the strategy, visit www.dairyresearch.ca.

The strategy will serve as an important guide for future research investments by DFC.
As a next step in the planning process, DFC’s call for research proposals will be launched the week of November 14, 2016.  Canadian dairy scientists will be invited to apply for funding for the next Dairy Research Cluster.

To receive the call for proposals announcement and details, please subscribe to our distribution list by clicking on the following link by November 11, 2016DFC Call for Research Proposals Distribution List.

New governance body for national research investments: The Canadian Dairy Research Council

The Canadian Dairy Research Council (CDRC) is a new committee with representation from all provinces and members of the Board of Directors of DFC. The CDRC reports to the DFC Board. It guides the overall development, implementation and delivery of research activities for dairy production, and human nutrition and health research.

The CDRC completed its first mandate in June 2016 and developed DFC’s National Dairy Research Strategy to better coordinate dairy farmers’ research investments at the national and provincial levels. The National Dairy Research Strategy was approved by DFC’s Board of Directors in June 2016 and presented to its General Council in July 2016.

For information on dairy research governance and on research highlights, download our fact sheets at:

 

Including corn in crop rotations is profitable for dairy farms and does not result in greater greenhouse gas emissions at the whole farm level

screen-shot-2016-09-27-at-7-43-35-am

The following is an abstract of a poster presented by student Véronique Ouellet, Université Laval, at the American Dairy Science Association meeting in Utah last summer.

 

 

 

Corn silage is recognized as a palatable and digestible source of energy for dairy cows. On the other hand, corn silage production is widely criticized as it may carry more environmental risks than perennial forages.

Objective

Our objective was to use the whole-farm model N-CyCLES to assess the effect of different crop rotations with varied levels of environmental risks on dairy farm profits, nitrogen (N) and phosphorous (P) balance, and greenhouse gas emissions, while optimizing the management practices required to achieve maximum profits. Adaptations made to the model, included modification to rotations, adjustment in the optimization constraints, evaluation of crop production cost, evaluation of forage nutritive value, and update in fertilization requirements.

Methods

Data representative of an average dairy farm from Centre-du-Quebec region in Quebec, Canada were used. Four crop rotation scenarios considered to have different environmental impact were built in the model, and compared: corn grain-soybean-corn silage-alfalfa-alfalfa (very high negative impact, +++); corn grain-soybean-corn silage-alfalfa/timothy-alfalfa/timothy-alfalfa/timothy (moderate negative impact, ++); cereal-alfalfa/timothy-alfalfa/timothy-alfalfa/timothy-naked oats (low negative, +); cereal-alfalfa/timothy-alfalfa/timothy-alfalfa/timothy-alfalfa/timothy-mixed grains (positive impact, -).

Results

Results showed that the highest dairy farm profits (0.12 $/kg of FPCM) were associated with the (++) rotation, whereas the lowest profits (0.05 $/kg of FPCM) were associated with the (-) rotation. The lowest farm-gate to farm-gate greenhouse gas emissions allocated to milk production (0.98 CO2 eq./kg of FPCM) was predicted for the (+++) rotation, whereas the highest value (1.03 CO2 eq./kg of FPCM) was predicted for the (-) rotation. This result is mainly explained by the lack of cash crops sold and the lower NFC and higher N content in cow diets for the farm with (-) rotation. The highest N and P balances (20.1 g/kg of FPCM and 1.185 g/kg of FPCM, respectively) were predicted for the (-) rotation since more corn grain was bought (156.5 t/yr) to compensate for the absence of corn grain and corn silage produced on the farm. Moreover, the lowest N and P balances (12.8 g/kg of FPCM, 0.465 g/kg of FPCM) were predicted for the (++) rotation.

Conclusion

These results suggested that including corn silage in the crop rotation do not carry a greater environmental risk on the considered output than crop rotations without corn, and that growing corn silage is profitable when the whole farm is considered as a single unit of decision. Sound practices still need to be developed to improve other environmental considerations such as soil structure and erosion.

Authors:  Ouellet, V. (Université Laval), D. Pellerin (Université Laval), M. Chantigny (AAFC), and E. Charbonneau (Université Laval)