Underlying genetic architecture of mastitis: A systematic review, meta and gene prioritization analysis of GWAS results

S. G. Narayana1,2, E. de Jong3, F. Schenkel2, P. Fonseca2, P. Ronksley3, T.C.S. Chu4, K. Orso1 and H. W. Barkema1,2

1Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1; 2Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1; 3Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1;

Background

- Mastitis is a complex polygenic disease that is regulated by several genes with small effects.
- We performed a systematic review, meta- and gene prioritization analysis of genome-wide association study (GWAS) studies to identify key genetic markers and genes associated with mastitis-related traits and somatic cell score (SCS) in dairy cattle.

Materials and Methods

- Systematic review question followed the PPQ framework (population: dairy cattle; prognostic tool: GWAS; outcome: mastitis and SCS).
- Search was conducted using electronic databases, conference proceedings and industry meeting reports.
- Gene prioritization analysis: GUIDify and ToppGene.
- Meta-analysis: Han and Eskin's random effects model in METASOFT.

Preliminary results

- Imported studies (n = 3,936)
 - Removed duplicates (n = 1,925)
- Screened abstracts (n = 2,011)
 - Irrelevant studies (n = 1,357)
- Screened full-texts (n = 654)
 - Excluded studies (n = 566)
 - Duplicate (n = 11)
 - Not original study (n = 8)
 - Wrong population (n = 3)
 - Not GWAS (n = 506)
 - Wrong outcome (n = 32)
 - No abstract available (n = 6)
- Reference and citation checking (n = 1)
 - Not yet analyzed (n = 75)
 - Full-text requested (n = 44)
 - Breed was not Holstein (n = 8)
 - Outcome not mastitis (n = 23)
- Included studies (n = 89)
 - Preliminary analysis (n = 14)

Table 1: Characteristics of included 14 studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of genotyped animals</th>
<th># SNPs used for the analysis</th>
<th># variants associated with mastitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cai 2018</td>
<td>5,147 bulls</td>
<td>15,552,968</td>
<td>22 SNPs</td>
</tr>
<tr>
<td>Fang 2017a</td>
<td>5,056 cattle</td>
<td>15,355,382</td>
<td>5 GO</td>
</tr>
<tr>
<td>Fang 2017b</td>
<td>5,056 cattle</td>
<td>15,355,382</td>
<td>5 SNPs</td>
</tr>
<tr>
<td>Fang 2018</td>
<td>5,056 cattle</td>
<td>15,355,382</td>
<td>5 QTL</td>
</tr>
<tr>
<td>Kurz 2019</td>
<td>43 cows</td>
<td>585,949</td>
<td>116 SNPs, 27 QTLs</td>
</tr>
<tr>
<td>Ma 2019</td>
<td>3,114 bulls</td>
<td>15,388,916</td>
<td>405 markers</td>
</tr>
<tr>
<td>Marete 2018a</td>
<td>46,732 cattle</td>
<td>40,810</td>
<td>11 SNPs</td>
</tr>
<tr>
<td>Marete 2018b</td>
<td>32,491 cows</td>
<td>49,835</td>
<td>28 SNPs</td>
</tr>
<tr>
<td>Naderi 2018</td>
<td>6,744 cows</td>
<td>43,939</td>
<td>4 SNPs</td>
</tr>
<tr>
<td>Sahana 2013</td>
<td>5,035 bulls</td>
<td>648,219</td>
<td>23 SNPs</td>
</tr>
<tr>
<td>Sahana 2014</td>
<td>2,098 bulls</td>
<td>36,387</td>
<td>143 SNPs</td>
</tr>
<tr>
<td>Su 2014</td>
<td>5,643 bulls</td>
<td>44,919</td>
<td></td>
</tr>
<tr>
<td>Tiezzi 2015</td>
<td>1,361 bulls</td>
<td>39,004</td>
<td>10 SNP windows</td>
</tr>
<tr>
<td>Yang 2019</td>
<td>40 cows</td>
<td>10,058</td>
<td>27 SNPs</td>
</tr>
</tbody>
</table>

- A clear definition of mastitis was absent in most of the studies.
- Cases in either the first, second or third lactation were often considered within studies.
- Quality assessment predominately focused on the handling of genomic data and the selection of SNPs for the GWAS.
- Various methods were used to conduct the GWAS.
- Reported outcomes varied across 14 studies.
- Identified genes were mostly associated with immune-related processes.

Figure 1: PRISMA flow diagram

Figure 2: Origin of data (A) and lactation considered (B), 14 studies

Figure 4: Commonly reported genes among the 14 pre-analysed studies

Conclusion

- 89 articles were identified.
- Among 14 studies immune-related 6 common genes were identified.

Significance

This systematic review will add value in summarizing GWAS findings to better understand the genetic architecture of mastitis in dairy cattle.